Model 00000 Full learning equilibrium

Asymptotic behavior

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のQ@

1/31

Conclusion

Incentivizing Hidden Types in Secretary Problem

Longjian Li¹ Alexis Akira Toda²

¹Peking University

²University of California San Diego

Seminar @UCSD October 7, 2022

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Classical secretary problem

- Administrator sequentially interviews job applicants 1,..., N in random order
- Can rank applicants already interviewed from best to worst
- Must accept or reject applicant immediately after interview, with no recall
- What is optimal stopping rule to maximize probability of hiring the best?

0

Full learning equilibrium

Asymptotic behavior

Classical secretary problem

- Administrator sequentially interviews job applicants 1,..., N in random order
- Can rank applicants already interviewed from best to worst
- Must accept or reject applicant immediately after interview, with no recall
- What is optimal stopping rule to maximize probability of hiring the best?
- Applications I have in mind:
 - Film director seeks to identify best fit actor
 - Department seeks to hire best junior candidate
 - Racquet manufacturer seeks to sponsor next Rafael Nadal

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Solution to classical secretary problem

• Define threshold

$$n^* = \min\left\{n: \sum_{k=n}^{N-1} \frac{1}{k} \leq 1
ight\}.$$

- Reject first $n^* 1$ applicants
- Accept next applicant if best among those already interviewed, otherwise reject
- As $N o \infty$, we can show

$$rac{n^*}{N}
ightarrow rac{1}{ ext{e}} pprox 0.37$$
Pr(success) $ightarrow rac{1}{ ext{e}} pprox 0.37$

(日) (日) (日) (日) (日) (日)

- First $n^* 1$ applicants always rejected, so no incentive to show up for interviews
- If applicants don't show up, administrator can't learn applicants' abilities
- What is optimal strategy of administrator if applicants incur cost c ∈ [0, 1) (relative to job value) to complete interview and must be incentivized to show up?

- Prove existence of unique full learning equilibrium
 - Administrator can tell whether current applicant is best among those already invited for interviews
- Prove optimality of full learning equilibrium
 - Among all equilibria, full learning equilibrium achieves maximum success probability
- Characterize asymptotic behavior as $N
 ightarrow \infty$
 - Success probability π_N^* exhibits power law decay N^{-c}

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

6/31

- An administrator
- $N \ge 2$ job applicants, invited for interviews in order $1, 2, \dots, N$
- Applicant *n* has ability $\theta_n > 0$

- When invited for interview, applicant chooses action a = 0 (decline interview) or a = 1 (complete interview)
- Interview reveals output $y = a\theta$, where θ : ability
- Immediately after interview n, administrator must accept or reject applicant n based only on history of observed outputs {y₁,..., y_n}
- Game ends if applicant accepted; move to next applicant if rejected; no recall

- Applicant:
 - Job value normalized to 1
 - Completing interview costs $c \in [0,1)$
- Administrator: if accept applicant with ability θ , then payoff is

$$\begin{cases} 1 & \text{if } \theta = \max_{1 \le n \le N} \theta_n, \\ 0 & \text{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

9/31

• All agents risk-neutral

Model 000●0 Full learning equilibrium

Asymptotic behavior

Information

- Abilities $\{\theta_n\}_{n=1}^N$ realized before game begins but private information
- Administrator believes rank orders of $\{\theta_n\}_{n=1}^N$ have no ties and equally likely with probability 1/N!
- When administrator invites applicant n, presents past outputs $\{y_1, \ldots, y_{n-1}\}$
- Applicant chooses action a_n ∈ {0,1} and output y_n = a_nθ_n observed
- After game ends, $\{\theta_n\}_{n=1}^N$ becomes public information and payoffs realized

(日) (日) (日) (日) (日) (日)

Model 0000● Full learning equilibrium

Asymptotic behavior

Strategies

- Let $H_n = \mathbb{R}^n_+$ be set of outputs of first *n* applicants $(H_0 = \emptyset)$
- Applicant *n*'s strategy is a function $s_n: H_{n-1} \times (0, \infty) \rightarrow \{0, 1\}$
 - s_n(y₁,..., y_{n-1}, θ) = 1 (= 0) means applicant n with ability θ completes (declines) interview given past outputs (y₁,..., y_{n-1})
- Administrator's (mixed) strategy is a collection of functions

$$\sigma = \{\sigma_n\}_{n=1}^N$$
 with $\sigma_n : H_n \to [0, 1]$

- *p* = σ_n(y₁,..., y_n) is probability administrator accepts applicant *n* given outputs (y₁,..., y_n)
- commitment power, so choose $\boldsymbol{\sigma}$ once and for all
- Nash equilibrium is strategy profile (σ^{*}, s^{*}₁,..., s^{*}_N) that is mutually best response

(日) (日) (日) (日) (日) (日)

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Full learning equilibrium

- Focus on full learning equilibrium
- We say equilibrium is full learning if for any equilibrium path and *n* until game ends, we have

$$\max_{1\leq k\leq n}\theta_k=\max_{1\leq k\leq n}y_k$$

• This condition allows administrator to tell if current applicant is best among those already interviewed

ь	÷	÷.		A		÷	~	
			U		C	L		
0								

Model 00000 Full learning equilibrium

Asymptotic behavior

13/31

Lemma Let $(\sigma^*, s_1^*, \ldots)$

Let $(\sigma^*, s_1^*, \dots, s_N^*)$ be a full learning equilibrium. Then $\theta_1 = y_1$ and

$$\theta_n \begin{cases} = \max_{1 \le k \le n} \theta_k & \text{if } y_n > \max_{1 \le k \le n-1} y_k, \\ < \max_{1 \le k \le n} \theta_k & \text{if } y_n \le \max_{1 \le k \le n-1} y_k \end{cases}$$

for $n \ge 2$ until the game ends.

Asymptotic behavior

Lemma

Let $(\sigma^*, s_1^*, \dots, s_N^*)$ be a full learning equilibrium. Then $\theta_1 = y_1$ and

$$\theta_n \begin{cases} = \max_{1 \le k \le n} \theta_k & \text{if } y_n > \max_{1 \le k \le n-1} y_k, \\ < \max_{1 \le k \le n} \theta_k & \text{if } y_n \le \max_{1 \le k \le n-1} y_k \end{cases}$$

for $n \ge 2$ until the game ends.

Proof.

- If $y_n > \max_{1 \le k \le n-1} y_k$, then $0 < y_n = a_n \theta_n$ so $a_n = 1$ and $\theta_n = y_n$
- Hence $\theta_n = y_n = \max_{1 \le k \le n} y_k = \max_{1 \le k \le n} \theta_k$
- If $y_n \leq \max_{1 \leq k \leq n-1} y_k$, then

$$\theta_n \leq \max_{1 \leq k \leq n} \theta_k = \max_{1 \leq k \leq n} y_k = \max_{1 \leq k \leq n-1} y_k = \max_{1 \leq k \leq n-1} \theta_k,$$

and inequality strict because no ties

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ◇◇◇

Asymptotic behavior

15/31

Partial characterization of equilibrium strategy

Lemma

Let $(\sigma^*, s_1^*, \dots, s_N^*)$ be a full learning equilibrium. Then

$$\sigma_n^*(y_1,\ldots,y_n) \begin{cases} \geq c & \text{if } y_n > \max_{1 \leq k \leq n-1} y_k, \\ = 0 & \text{if } y_n \leq \max_{1 \leq k \leq n-1} y_k, \end{cases}$$
$$s_n^*(y_1,\ldots,y_{n-1},\theta) = \begin{cases} 1 & \text{if } \theta > \max_{1 \leq k \leq n-1} y_k, \\ 0 & \text{if } \theta \leq \max_{1 \leq k \leq n-1} y_k. \end{cases}$$

Partial characterization of equilibrium strategy

Lemma

Let $(\sigma^*, s_1^*, \dots, s_N^*)$ be a full learning equilibrium. Then

$$\sigma_n^*(y_1,\ldots,y_n) \begin{cases} \geq c & \text{if } y_n > \max_{1 \leq k \leq n-1} y_k, \\ = 0 & \text{if } y_n \leq \max_{1 \leq k \leq n-1} y_k, \end{cases}$$
$$s_n^*(y_1,\ldots,y_{n-1},\theta) = \begin{cases} 1 & \text{if } \theta > \max_{1 \leq k \leq n-1} y_k, \\ 0 & \text{if } \theta \leq \max_{1 \leq k \leq n-1} y_k. \end{cases}$$

Idea:

- Administrator promises acceptance probability *c* if applicant current best so as to incentivize completing interview
- Then current applicant completes interview if current best, otherwise declines

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Dynamic programming

- State is n and $x \in X = \{0, 1\}$, where
 - x = 1: applicant is current best
 - x = 0: applicant is not current best
- By random order, we have $Pr(x' = 1) = \frac{1}{n+1}$ independent of x
- Let $V_n(x)$ be value function; then Bellman equation is

$$V_n(0) = \frac{1}{n+1}V_{n+1}(1) + \frac{n}{n+1}V_{n+1}(0)$$

 If x = 1, need to promise acceptance probability p ≥ c to incentivize applicant to complete interview

(日) (日) (日) (日) (日) (日)

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Dynamic programming

• If accept, payoff is

$$\Pr\left(\theta_n = \max_{1 \le k \le N} \theta_k \mid x = 1\right)$$

= $\Pr(n \text{ is best among all } \mid n \text{ is best among first } n)$
= $\Pr(n \text{ is best among all and first } n) / \Pr(n \text{ is best among first } n)$
= $\Pr(n \text{ is best among all}) / \Pr(n \text{ is best among first } n)$
= $(1/N)/(1/n) = \frac{n}{N}$

• Hence Bellman equation is

$$V_n(1) = \max_{c \le p \le 1} \left\{ p \frac{n}{N} + (1-p) \left(\frac{1}{n+1} V_{n+1}(1) + \frac{n}{n+1} V_{n+1}(0) \right) \right\}$$

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Dynamic programming

Proposition

The value functions in a full learning equilibrium satisfy $V_N(0) = 0$, $V_N(1) = 1$, and

$$V_n(0) = \frac{1}{n+1} V_{n+1}(1) + \frac{n}{n+1} V_{n+1}(0),$$

$$V_n(1) = \max_{c \le p \le 1} \left\{ p \frac{n}{N} + (1-p) V_n(0) \right\}$$

$$= \max \left\{ c \frac{n}{N} + (1-c) V_n(0), \frac{n}{N} \right\} > 0$$

- Define normalized value function $v_n(x) := V_n(x)/n$
- Dividing Bellman equations by n, we get

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Normalized value functions

Proposition

The normalized value $v_n(x) = V_n(x)/n$ satisfies $v_N(0) = 0, \ v_N(1) = 1/N,$ and

$$v_n(0) = \frac{1}{n} v_{n+1}(1) + v_{n+1}(0),$$

$$v_n(1) = \max \{ c/N + (1-c)v_n(0), 1/N \}.$$

Furthermore, $v_n(0)$ is strictly decreasing in n and $v_n(1)$ is decreasing in n.

- Strict monotonicity of $v_n(0)$ implies that there exists threshold n^* such that
 - Accept current best applicant n with probability c if $n < n^*$
 - Accept current best applicant n with probability 1 if $n \ge n^*$

Model 00000 Full learning equilibrium

Asymptotic behavior

Existence of full learning equilibrium

Theorem

For all $N \ge 2$ and $c \in [0, 1)$, there exists a unique full learning equilibrium, which can be constructed as follows:

1. Define $n^* = \min \left\{ n : \sum_{k=n}^{N-1} \frac{1}{k} \le 1 \right\}$.

2. Define $\sigma_n^*: H_n \to [0,1]$ by

$$\sigma_n^*(y_1,\ldots,y_n) = \begin{cases} 1 & \text{if } n \ge n^* \text{ and } 0 < y_n = \max_{1 \le k \le n} y_k, \\ c & \text{if } n < n^* \text{ and } 0 < y_n = \max_{1 \le k \le n} y_k, \\ 0 & \text{otherwise.} \end{cases}$$

3. Define $s_n^*: H_{n-1} imes (0,\infty) o \{0,1\}$ by

$$s_n^*(y_1,\ldots,y_{n-1},\theta) = \begin{cases} 1 & \text{if } \theta > \max_{1 \le k \le n-1} y_k, \\ 0 & \text{if } \theta \le \max_{1 \le k \le n-1} y_k. \end{cases}$$

Model 00000 Full learning equilibrium

Asymptotic behavior

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のQ@

22/31

Conclusion

Optimality of full learning equilibrium

- This game has many equilibria (e.g., ignore first k candidates and then learn)
- Which equilibrium is best?

Model 00000 Full learning equilibrium

Asymptotic behavior

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

23/31

Conclusion

Optimality of full learning equilibrium

- This game has many equilibria (e.g., ignore first k candidates and then learn)
- Which equilibrium is best?

Theorem

The full learning equilibrium is optimal in the sense that the success probability is the highest among all equilibria.

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Proof idea

- Proof is difficult because there are many ways to deviate (learn or not learn)
- Let $P_{n,N}(y_1, \ldots, y_n)$ be success probability in any equilibrium conditional on interviewing first *n* applicant and full learning
- For n + 1, possible deviations are (i) learn and accept with probability p ∈ [c, 1] conditional on current best, or (ii) not learn and accept with probability p ∈ [0, 1]
- Use induction on j = N n (number of remaining applicants) to bound $P_{n,N}(y_1, \ldots, y_n)$ from above by continuation value of full learning equilibrium
- Then full learning equilibrium is optimal because $P_{1,N} \leq V_1(1)$ by induction

(日) (日) (日) (日) (日) (日)

Model 00000 Full learning equilibrium

Asymptotic behavior

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のQ@

25/31

Conclusion

Asymptotic behavior: threshold n^*

Proposition
The threshold
$$n_N^* = \min \left\{ n : \sum_{k=n}^{N-1} \frac{1}{k} \le 1 \right\}$$
 satisfies
 $\frac{N}{e} \le n_N^* \le \frac{N-1}{e} + 2.$

In particular, $\lim_{N\to\infty} n_N^*/N = 1/e = 0.367...$

Conclusion

Proof

• Let
$$t = n_N^*$$

• By definition, we have

$$1 \ge \sum_{k=t}^{N-1} \frac{1}{k} \ge \int_t^N \frac{1}{x} \, \mathrm{d}x = \log \frac{N}{t} \implies t \ge \frac{N}{\mathrm{e}}$$

• Similarly,

$$1 < \sum_{k=t-1}^{N-1} \frac{1}{k} \le \int_{t-2}^{N-1} \frac{1}{x} \, \mathrm{d}x = \log \frac{N-1}{t-2} \implies t \le \frac{N-1}{\mathrm{e}} + 2$$

26/31

◆□▶ ◆□▶ ◆目▶ ◆日▶ ●□■ のへ⊙

Model 00000 Full learning equilibrium

Asymptotic behavior

27/31

Asymptotic behavior: success probability $\pi_N^* = V_1(1)$ Theorem If $c \in [0, 1)$, then

$$\lim_{N\to\infty} N^c \pi_N^* = \frac{\mathrm{e}^{c-1}}{\Gamma(2-c)},$$

where Γ is the gamma function. In particular, if c=0 then $\lim_{N\to\infty}\pi_N^*=1/{\rm e}=0.367\ldots$

Full learning equilibrium

Asymptotic behavior

Asymptotic behavior: success probability $\pi_N^* = V_1(1)$ Theorem

If $c \in [0,1)$, then

$$\lim_{N\to\infty} N^c \pi_N^* = \frac{\mathrm{e}^{c-1}}{\Gamma(2-c)},$$

where Γ is the gamma function. In particular, if c=0 then $\lim_{N\to\infty}\pi_N^*=1/{\rm e}=0.367\ldots$

- π_N^* exhibits a power law decay with exponent -c
- Proof uses value function iteration, Gauss product formula for gamma function

$$\Gamma(z) = \lim_{n\to\infty} \frac{n^z n!}{z(z+1)\cdots(z+n)},$$

and definition of Riemann integral (pretty cool)

29/31

30/31

Model 00000 Full learning equilibrium

Asymptotic behavior

Conclusion

Concluding remarks

- Extended classical secretary problem with incentives
- Even if applicants incur interview cost *c*, threshold is same as no cost
- However, for applicants n < n*, administrator accepts with probability c if current best to incentivize completing interview
- Future work: what if administrator observes noisy signal of ability θ_n and can decide interview order?

References

References